Preskúmajte tieto a ďalšie námety.

JuliaSetPlot[z-(z^9-1)/(9z^2),z,ColorFunction->"RustTones"]

JuliaSetPlot[z-(z^9-1)/(9z^2),z,ColorFunction->"RustTones"]

JuliaSetPlot[(0.69 - 0.5 I) + (0.51-0.44 I)/ z^2 - (0.63 - 0.37 I) z + (0.02 - 0.09 I) z^3, z,ColorFunction -> "AvocadoColors"]

Tweet-a-Program on

JuliaSetPlot[(0.69 - 0.5 I) + (0.51-0.44 I)/ z^2 - (0.63 - 0.37 I) z + (0.02 - 0.09 I) z^3, z,ColorFunction -> "AvocadoColors"]

pts=RandomReal[1,{10,3}];f=Nearest[pts];DensityPlot3D[First[f[{x,y,z}]]/.MapIndexed[#->First@#2&,pts],{x,0,1},{y,0,1},{z,0,1}]

Tweet-a-Program on

pts=RandomReal[1,{10,3}];f=Nearest[pts];DensityPlot3D[First[f[{x,y,z}]]/.MapIndexed[#->First@#2&,pts],{x,0,1},{y,0,1},{z,0,1}]

ParametricPlot[{Sin[13t],Sin[19t]},{t,0,2 Pi}]

Tweet-a-Program on

ParametricPlot[{Sin[13t],Sin[19t]},{t,0,2 Pi}]

t = Degree; Graphics@{Disk[],    Table[{White, Thick,      Line[{{Cos[r t], Sin[r t]}, {Cos[33 r t], Sin[33 r t]}}]}, {r, 0,      360}]}

Tweet-a-Program on

t = Degree; Graphics@{Disk[], Table[{White, Thick, Line[{{Cos[r t], Sin[r t]}, {Cos[33 r t], Sin[33 r t]}}]}, {r, 0, 360}]}

z=Sqrt[.04t^2+1];Graphics3D@{Cylinder[{{0,0,-1},{0,0,1}},.2], Tube[Table[{Cos@t/z,Sin@t/z,-.2t/z},{t,-30,30,.1}],.045]}

Tweet-a-Program on

z=Sqrt[.04t^2+1];Graphics3D@{Cylinder[{{0,0,-1},{0,0,1}},.2], Tube[Table[{Cos@t/z,Sin@t/z,-.2t/z},{t,-30,30,.1}],.045]}

Graphics3D@HilbertCurve[4,3]

Tweet-a-Program on

Graphics3D@HilbertCurve[4,3]

Graphics@NestList[Rotate[#,.13]&,Riffle[Table[Hue[i/25],{i,404}],Point@#&/@Flatten[AnglePath[# Range[-1,1,.01]]&/@{1,-1},1]],48]

Tweet-a-Program on

Graphics@NestList[Rotate[#,.13]&,Riffle[Table[Hue[i/25],{i,404}],Point@#&/@Flatten[AnglePath[# Range[-1,1,.01]]&/@{1,-1},1]],48]

GeoGraphics[  GeoMarker@Interpreter["StreetAddress"]["10 Downing Street, London"],   GeoRange -> Quantity[.15, "Miles"]]

Tweet-a-Program on

GeoGraphics[ GeoMarker@Interpreter["StreetAddress"]["10 Downing Street, London"], GeoRange -> Quantity[.15, "Miles"]]

Graphics[{Table[{ColorData["CandyColors"][1/4 Cos[t] + 3/4],      Disk[{Sin[3 t], Cos[5 t]}, .02]}, {t, -Pi, Pi, 2*Pi/405}]},   Background -> Black]

Tweet-a-Program on

Graphics[{Table[{ColorData["CandyColors"][1/4 Cos[t] + 3/4], Disk[{Sin[3 t], Cos[5 t]}, .02]}, {t, -Pi, Pi, 2*Pi/405}]}, Background -> Black]

Pinterest
Hľadať